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The title salt, C8H10N5
+
�Br�, crystallizes with two independent

structural units in the asymmetric unit. The two independent

cations have different conformations, the triazole and phenyl

rings forming dihedral angles of 32.57 (6) and 52.27 (7)�. In

both cations, the amino groups are planar (the sum of the

angles at the N atom of each amino group is 360�) and

conjugated with the triazole ring. Intermolecular N—H� � �N

and N—H� � �Br hydrogen bonds consolidate the crystal

packing.

Related literature

For the crystal structures of protonated C-amino-1,2,4-tria-

zoles, see: Reck et al. (1982); Lynch et al. (1998, 1999); Baouab

et al. (2000); Bichay et al. (2006); Guerfel et al. (2007);

Matulková et al. (2007). For the crystal structure of 3,5-

diamino-1,2,4-triazole, see: Starova et al. (1980). For the

theoretical investigation of the protonation of C-amino-1,2,4-

triazoles, see: Anders et al. (1997). For the reactions of 1-

substituted 3,5-diamino-1,2,4-triazoles with electrophilic

reagents, see: Steck et al. (1958); Chernyshev et al. (2005,

2008). For the use of 1-substituted 3,5-diamino-1,2,4-triazoles

as building blocks in the synthesis of various derivatives of

1,2,4-triazole and fused heterocyclic systems, see: Dunstan et

al. (1998); Chernyshev et al. (2006, 2009, 2010). For a

description of the Cambridge Structural Database, see: Allen

(2002).

Experimental

Crystal data

C8H10N5
+
�Br�

Mr = 256.12
Monoclinic, P21=n
a = 13.752 (2) Å
b = 7.1172 (13) Å
c = 20.394 (4) Å
� = 95.519 (3)�

V = 1986.7 (6) Å3

Z = 8
Mo K� radiation
� = 4.11 mm�1

T = 100 K
0.55 � 0.40 � 0.30 mm

Data collection

Bruker APEXII CCD area-detector
diffractometer

Absorption correction: multi-scan
(SADABS; Bruker, 2004)
Tmin = 0.211, Tmax = 0.372

19484 measured reflections
4314 independent reflections
3808 reflections with I > 2�(I)
Rint = 0.033

Refinement

R[F 2 > 2�(F 2)] = 0.027
wR(F 2) = 0.071
S = 1.00
4314 reflections

253 parameters
H-atom parameters constrained
��max = 0.63 e Å�3

��min = �0.52 e Å�3

Table 1
Hydrogen-bond geometry (Å, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

N3—H3A� � �N20 i 0.86 2.20 3.037 (3) 164
N3—H3B� � �Br1 0.86 2.56 3.387 (2) 163
N30—H30A� � �N2ii 0.86 2.34 3.046 (3) 140
N30—H30B� � �Br2 0.86 2.65 3.404 (3) 147
N4—H4� � �Br2 0.86 2.74 3.417 (3) 137
N40—H40� � �Br2 0.86 2.51 3.254 (3) 145
N5—H5A� � �Br1iii 0.86 2.69 3.369 (3) 137
N5—H5B� � �Br2 0.86 2.49 3.281 (3) 153
N50—H50A� � �Br1iv 0.86 2.84 3.489 (3) 133
N50—H50B� � �Br1 0.86 2.43 3.278 (3) 167

Symmetry codes: (i) xþ 1
2;�yþ 1

2; z þ 1
2; (ii) x� 1

2;�yþ 1
2; z� 1

2; (iii)
�x þ 1

2; yþ 1
2;�zþ 3

2; (iv) �xþ 1;�y;�zþ 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT

(Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2005);

program(s) used to solve structure: SHELXS97 (Sheldrick, 2008);

program(s) used to refine structure: SHELXL97 (Sheldrick, 2008);

molecular graphics: Mercury (Macrae et al., 2006); software used to

prepare material for publication: SHELXTL (Sheldrick, 2008),

publCIF (Westrip, 2010) and PLATON (Spek, 2009).
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3,5-Diamino-1-phenyl-1,2,4-triazolium bromide

V. M. Chernyshev, A. V. Astakhov, V. V. Ivanov and Z. A. Starikova

Comment

1-Substituted 3,5-diamino-1,2,4-triazoles are employed as convenient models for investigating the reactions of C-amino-
1,2,4-triazoles with electrophiles so far as their molecules contain two amino groups having greatly varied nucleophilicity
in positions 3 and 5 of triazole cycle (Chernyshev et al., 2005, 2008, 2010). Relatively high reactivity toward electrophiles
allows to use 1-substituted 3,5-diamino-1,2,4-triazoles as starting materials for the selective synthesis of 1,2,4-triazole de-
rivatives and annulated heterocycles (Dunstan et al., 1998; Chernyshev et al., 2006, 2009, 2010). Some contradictions
concerning the direction of several reactions of these compounds with electrophiles are present in the literature. For ex-
ample, it was reported that quaternization of 1-substituted 3,5-diamino-1,2,4-triazoles by alkyl halides (Steck et al., 1958)
resulted in formation of 1,2-disubstituted 3,5-diamino-1,2,4-triazolium salts (Fig. 1). However these data are in contrast
with quantum chemical calculations and synthetic experiments according to which the quaternization of 1-substituted 3-
amino-1,2,4-triazoles as well as 1-substituted 5-amino-1,2,4-triazoles occurs at the atom N4 of triazole cycle (Anders et
al.; 1997). While studying the quaternization of 2-amino-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidines (Chernyshev
et al., 2008), which are analogous to 1-substituted 3,5-diamino-1,2,4-triazoles in most of reactions with electrophiles, we
found that alkylation takes place at the atom N4 of triazole cycle (a prevailing product) and at the C3-amino group (a
minor product). The quantum chemical calculations predict that the direction of protonation and quaternization of 1-sub-
stituted C-amino-1,2,4-triazoles should be identical (Anders et al., 1997). Therefore protonation can be used as model re-
action for investigation of quaternization of 1-substituted 3,5-diamino-1,2,4-triazoles by alkyl halides. It should be noted
that the data concerning the crystal structure of salts of 1-substituted C-amino-1,2,4-triazoles with proton acids were absent
in the Cambridge Structural Database so far (Allen, 2002). Here we report the crystal structure of the title compound, 1-
phenyl-1H-1,2,4-triazole-3,5-diamine hydrobromide (Fig. 2). The crystals of this compound were surprisingly obtained in
attempting to grow the crystal of 3-amino-5,7-dimethyl-2-phenyl-[1,2,4]triazolo[4,3-a]pyrimidin-2-ium bromide, suitable
for X-ray investigation, from water-acetonitrile. Obviously, the starting triazolopyrimidine gradually hydrolyzed to the 1-
phenyl-1H-1,2,4-triazole-3,5-diamine hydrobromide and 2,4-pentanedion. It indicates that 1-substituted [1,2,4]triazolo[4,3-
a]pyrimidin-2-ium salts are inclined to hydrolyze even at room temperature (Fig. 3).

According to our X-ray investigation, the asymmetric unit of the crystal structure consists of two crystallographically
independent cations further denoted as the cation A (N1N2C3··· etc.) and the cation B (N1'N2'C3'··· etc.), and two bromide
anions (Br1 and Br2). The cations A and B somewhat differ in bond lengths and mutual orientation of benzene and triazole
rings. The dihedral angle between the benzene and triazole cycles is 32.57 (6)° in the cation A whereas that is 52.27 (7)°
in the cation B. The triazole cycle is planar in both cations (the deviation of atoms from the mean-square planes does
not exceed 0.008 (2) Å). As with the other salts of C-amino-1,2,4-triazoles (Reck et al., 1982; Lynch et al., 1998, 1999;
Baouab et al., 2000; Bichay et al., 2006; Guerfel et al., 2007; Matulková et al., 2007), the acid proton is attached to the
atom N4, amino groups are planar and conjugated with the π-system of triazole cycle. In contrast to the unprotonated
3,5-diamino-1,2,4-triazole (Starova et al., 1980) and alkyl derivatives of 3,5-diamino-1-phenyl-1,2,4-triazole (Dunstan et al.,
1998), in the cations A and B the C5—N1 and C3—N2 bonds are shorter than the C3—N4 and C5—N4 bonds. An analogous
regularity is observed for the majority of other salts of C-amino-1,2,4-triazoles (Reck et al., 1982; Lynch et al., 1998, 1999;
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Baouab et al., 2000; Bichay et al., 2006; Guerfel et al., 2007; Matulková et al., 2007). Thus, the majority of protonated
C-amino-1,2,4-triazoles should be considered as derivatives of 4H-1,2,4-triazol-1-ium rather than 1H-1,2,4-triazol-4-ium
cation, except of 5-amino-3-azido-1H-1,2,4-triazol-4-ium nitrate (Bichay et al., 2006). It is remarkable that the bond C5—N5
(1.325 (3) Å) in the cation A is shorter than the bonds C5—N1 (1.335 (3) Å) and C5—N4 (1.358 (3) Å). The analysis
of bond lengths indicates that molecules forming by cation A can be described in the best way by the resonance structure
of 5-amino-2-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-iminium bromide (Fig. 4). A similar distributions of bond lengths are
observed in many other salts of C-amino-1,2,4-triazoles (for example, see: Reck et al., 1982; Lynch et al., 1998, 1999;
Bichay et al., 2006; Matulková et al., 2007; Guerfel et al., 2007). Therefore, it can be concluded that the C5—NH2 group

plays an important role in the redistribution of positive charge in the C-amino-1,2,4-triazolium cations. Molecules including
cation B are properly described by the resonance structure of 3,5-diamino-1-phenyl-4H-1,2,4-triazol-1-ium bromide (Fig. 4).

In the crystal the identical and parallel cations of type A or B form stacks along the b axis of the monoclinic cell (Fig.
5). In the direction [101] the adjacent stacks of the different-type cations form pairs in which they are displaced from each
other on 0.5 cell parameter b. One-type cations from the nearest stacks are related in the same direction by a glide plane n
perpendicular to [0, 1, 0] with glide component [1/2, 0, 1/2]. In the direction c the cations are turned from each other by
180° and displaced on 0.5 of cell parameter, i.e. are space related by 2-fold screw axis with direction [0, 1, 0] at 1/4, y, 1/4
with screw component [0, 1/2, 0]. Along the c axis one can see parallel linear chains which "links" consist of pairs of cations
A and B connected with bromide anions Br1 and Br2 by means of the hydrogen bonds N3—H3B···Br1, N5'—H5'B···Br1,
N4—H4···Br2, N4'—H4'···Br2, N5—H5B···Br2, N3'—H3'B···Br2 (Table 1). The nearest chains in the plane perpendicular to

b axis are connected with each other by continuous net of hydrogen bonds N3—H3A···N2'i and N3'—H3'A···N2ii, forming
parallel molecular layers with identity period equal to the unit-cell parameter b (Fig. 6). The layers are connected with one

another by hydrogen bonds N5—H5A···Br1iii and N5'—H5'A···Br1iv. In the parallel layers one-type cations are turned from

each other by 180°, i.e. they are space related by inversion centre with coordinates [0, 0, 0]. Thereby, the C8H10N5
+ cations

and bromide anions form a three-dimensional framework in the crystal.

In conclusion, the present study and previously reported theoretical (Anders et al., 1997) and experimental (Chernyshev
et al., 2008) results indicate that the structures attributed to the products of quaternization of 1-substituted 3,5-diamino-
1,2,4-triazoles (Steck et al., 1958), apparently, are erroneous and need correction by means of modern analytical methods.
Also it would be interesting to investigate the structure of salts of another 1-substituted 3-amino-1,2,4-triazoles with a view
to evaluate the role of C3—NH2 group in the delocalization of positive charge in 3-amino-1,2,4-triazolium cations.

Experimental

The crystals of 1-phenyl-1H-1,2,4-triazole-3,5-diamine hydrobromide suitable for X-ray analysis were obtained from a
solution of 3-amino-5,7-dimethyl-2-phenyl-[1,2,4]triazolo[4,3-a]pyrimidin-2-ium bromide (TPB) in 1:9 water: acetonitrile
mixture as a result of hydrolysis in the course of slow evaporation at room temperature during one week. The TPB was
prepared by the following procedure.

A mixture of 1-phenyl-1H-1,2,4-triazole-3,5-diamine hydrobromide (0.73 g, 2.85 mmol), 2,4-pentanedion (0.371 g, 3.71
mmol) and ethanol (5 ml) was refluxed for 15 min and then cooled to room temperature. The precipitate formed was filtered

off and recrystallized from ethanol to give 0.757 g (83% yield) of TPB, mp 221–223 °C. 1H NMR (300 MHz) δ: 1.95 (s,

3H, CH3), 2.95 (s, 3H, CH3), 7.22 (s, 1H, CH), 7.67–7.83 (m, 5H, Ph), 8.37 (s, 2H, NH2). 13C NMR (150 MHz) δ: 17.66,
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24.37, 113.62, 130.13, 130.30, 132.16, 132.63, 147.86, 153.85, 159.74, 170.43. LCMS: 240.29 [C13H14N5
+]. Anal. Calcd

for C13H14BrN5: C, 48.76; H, 4.41; N, 21.87. Found: C, 48.81; H, 4.21; N, 21.98.

Starting 1-phenyl-1H-1,2,4-triazole-3,5-diamine hydrobromide used for the preparation of TPB was obtained by addition
of equimolar amount of 48% hydrobromic acid to an ethanol solution of 3,5-diamino-1-phenyl-1,2,4-triazole. The latter
compound was synthesized by known method (Steck et al., 1958).

Refinement

C-bound H atoms were positioned geometrically (C—H 0.93 Å), while the rest H atoms were located on difference map
and further placed in idealized positions (N—H 0.86 Å). All H atoms were refined as riding on their parent atoms, with
Uiso(H) = 1.2 Ueq(parent atom).

Figures
Fig. 1. The supposed directions of quaternization of 1-substituted 3,5-diamino-1,2,4-triazoles
by halogen alkanes according to the literature data: a - Steck et al. (1958), b - Chernyshev et
al. (2008).

Fig. 2. The molecular structure of 1-phenyl-1H-1,2,4-triazole-3,5-diamine hydrobromide
with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability
level.

Fig. 3. Hydrolysis of 3-amino-5,7-dimethyl-2-phenyl-[1,2,4]triazolo[4,3-a]pyrimidin-2-ium
bromide.

Fig. 4. The resonance structures, corresponding to the 5-amino-2-phenyl-2,4-dihydro-3H-
1,2,4-triazol-3-iminium bromide (A) and 3,5-diamino-1-phenyl-4H-1,2,4-triazol-1-ium brom-
ide (B).

Fig. 5. Molecular packing in the crystal, viewed down the b axis. Hydrogen bonds are shown
as dashed lines.

Fig. 6. The crystal packing of the title compound, viewed down the a axis showing molecular
layers in the planes perpendicular to the b axis. Hydrogen bonds are shown as dashed lines.

3,5-Diamino-1-phenyl-1,2,4-triazolium bromide

Crystal data

C8H10N5
+·Br− F(000) = 1024

Mr = 256.12 Dx = 1.713 Mg m−3

Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 568 reflections
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a = 13.752 (2) Å θ = 3–26°
b = 7.1172 (13) Å µ = 4.11 mm−1

c = 20.394 (4) Å T = 100 K
β = 95.519 (3)° Plate, colourless

V = 1986.7 (6) Å3 0.55 × 0.40 × 0.30 mm
Z = 8

Data collection

Bruker APEXII CCD area-detector
diffractometer 4314 independent reflections

Radiation source: fine-focus sealed tube 3808 reflections with I > 2σ(I)
graphite Rint = 0.033

ω scans θmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004) h = −17→17

Tmin = 0.211, Tmax = 0.372 k = −9→9
19484 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct
methods

Least-squares matrix: full Secondary atom site location: difference Fourier map

R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: difference Fourier map

wR(F2) = 0.071 H-atom parameters constrained

S = 1.00
w = 1/[σ2(Fo

2) + (0.0375P)2 + 2.843P]
where P = (Fo

2 + 2Fc
2)/3

4314 reflections (Δ/σ)max = 0.001

253 parameters Δρmax = 0.63 e Å−3

0 restraints Δρmin = −0.52 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance mat-
rix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations
between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of
cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, convention-

al R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-

factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Br1 0.469797 (17) 0.08357 (3) 0.629576 (11) 0.01647 (7)
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Br2 0.183938 (18) 0.24667 (3) 0.647848 (11) 0.01826 (8)
N1' 0.28802 (13) 0.3108 (3) 0.40098 (9) 0.0106 (4)
N1 0.33201 (14) 0.2566 (3) 0.88547 (9) 0.0105 (4)
C5 0.28387 (16) 0.2595 (3) 0.82544 (11) 0.0109 (4)
C3' 0.17571 (16) 0.3375 (3) 0.46553 (11) 0.0109 (4)
N2 0.43255 (13) 0.2227 (3) 0.88259 (9) 0.0110 (4)
N2' 0.18826 (13) 0.3526 (3) 0.40275 (9) 0.0110 (4)
C3 0.44019 (16) 0.2009 (3) 0.81952 (11) 0.0112 (4)
C5' 0.33040 (16) 0.2696 (3) 0.46079 (11) 0.0108 (4)
N3 0.52349 (14) 0.1671 (3) 0.79256 (10) 0.0155 (4)
H3A 0.5776 0.1581 0.8172 0.019*
H3B 0.5228 0.1544 0.7506 0.019*
C6 0.29678 (17) 0.2856 (3) 0.94788 (11) 0.0112 (4)
C6' 0.33268 (16) 0.3120 (3) 0.34068 (11) 0.0108 (4)
N3' 0.09158 (14) 0.3663 (3) 0.49263 (10) 0.0139 (4)
H3'A 0.0397 0.3978 0.4682 0.017*
H3'B 0.0897 0.3533 0.5344 0.017*
C7' 0.41759 (17) 0.4159 (3) 0.33736 (12) 0.0141 (4)
H7' 0.4425 0.4895 0.3727 0.017*
N4' 0.26139 (14) 0.2888 (3) 0.50273 (9) 0.0106 (4)
H4' 0.2691 0.2737 0.5447 0.013*
N4 0.35127 (14) 0.2222 (3) 0.78272 (9) 0.0110 (4)
H4 0.3406 0.2134 0.7406 0.013*
C7 0.20341 (17) 0.2241 (3) 0.95945 (12) 0.0144 (5)
H7 0.1630 0.1663 0.9262 0.017*
C8' 0.46478 (17) 0.4074 (3) 0.27991 (12) 0.0168 (5)
H8' 0.5225 0.4738 0.2771 0.020*
N5 0.18967 (14) 0.2885 (3) 0.80841 (10) 0.0139 (4)
H5A 0.1508 0.3091 0.8382 0.017*
H5B 0.1674 0.2869 0.7675 0.017*
N5' 0.42386 (14) 0.2226 (3) 0.47651 (10) 0.0140 (4)
H5'A 0.4634 0.2166 0.4464 0.017*
H5'B 0.4445 0.1983 0.5168 0.017*
C8 0.17218 (18) 0.2512 (4) 1.02182 (12) 0.0189 (5)
H8 0.1098 0.2134 1.0300 0.023*
C9' 0.42605 (18) 0.3005 (4) 0.22696 (12) 0.0184 (5)
H9' 0.4585 0.2932 0.1891 0.022*
C9 0.2331 (2) 0.3340 (4) 1.07174 (12) 0.0203 (5)
H9 0.2116 0.3514 1.1132 0.024*
C10' 0.33847 (19) 0.2038 (3) 0.23038 (12) 0.0177 (5)
H10' 0.3116 0.1362 0.1940 0.021*
C10 0.32641 (19) 0.3909 (3) 1.05977 (12) 0.0184 (5)
H10 0.3677 0.4445 1.0935 0.022*
C11 0.35831 (17) 0.3681 (3) 0.99777 (11) 0.0142 (5)
H11 0.4205 0.4078 0.9897 0.017*
C11' 0.29117 (17) 0.2074 (3) 0.28729 (11) 0.0135 (4)
H11' 0.2332 0.1418 0.2899 0.016*
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Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Br1 0.01631 (12) 0.02134 (13) 0.01186 (12) −0.00248 (9) 0.00199 (8) 0.00081 (9)
Br2 0.02081 (13) 0.02303 (14) 0.01122 (12) 0.00564 (10) 0.00289 (9) −0.00001 (9)
N1' 0.0066 (9) 0.0153 (9) 0.0099 (9) −0.0003 (7) 0.0012 (7) 0.0007 (7)
N1 0.0081 (9) 0.0145 (9) 0.0089 (9) 0.0022 (7) 0.0008 (7) −0.0006 (7)
C5 0.0112 (10) 0.0094 (10) 0.0122 (10) −0.0009 (8) 0.0013 (8) −0.0006 (8)
C3' 0.0107 (10) 0.0097 (10) 0.0123 (10) −0.0016 (8) 0.0008 (8) −0.0007 (8)
N2 0.0074 (9) 0.0150 (9) 0.0108 (9) 0.0020 (7) 0.0020 (7) −0.0005 (7)
N2' 0.0064 (9) 0.0146 (9) 0.0122 (9) 0.0006 (7) 0.0016 (7) 0.0012 (7)
C3 0.0129 (11) 0.0092 (10) 0.0115 (10) 0.0011 (8) 0.0014 (8) 0.0000 (8)
C5' 0.0110 (10) 0.0106 (10) 0.0109 (10) −0.0014 (8) 0.0017 (8) −0.0001 (8)
N3 0.0117 (9) 0.0250 (11) 0.0100 (9) 0.0050 (8) 0.0028 (7) −0.0012 (8)
C6 0.0143 (11) 0.0106 (10) 0.0090 (10) 0.0053 (8) 0.0027 (8) 0.0015 (8)
C6' 0.0117 (10) 0.0117 (10) 0.0092 (10) 0.0030 (8) 0.0023 (8) 0.0026 (8)
N3' 0.0105 (9) 0.0209 (10) 0.0106 (9) 0.0019 (8) 0.0027 (7) −0.0005 (8)
C7' 0.0134 (11) 0.0144 (11) 0.0146 (11) 0.0005 (9) 0.0014 (8) 0.0017 (9)
N4' 0.0111 (9) 0.0139 (9) 0.0069 (9) −0.0009 (7) 0.0012 (7) −0.0004 (7)
N4 0.0114 (9) 0.0141 (9) 0.0076 (9) 0.0014 (7) 0.0008 (7) −0.0005 (7)
C7 0.0120 (11) 0.0169 (11) 0.0141 (11) 0.0040 (9) 0.0008 (9) 0.0038 (9)
C8' 0.0119 (11) 0.0193 (12) 0.0197 (12) 0.0013 (9) 0.0045 (9) 0.0094 (10)
N5 0.0102 (9) 0.0214 (10) 0.0097 (9) 0.0024 (8) −0.0009 (7) −0.0026 (8)
N5' 0.0099 (9) 0.0212 (10) 0.0108 (9) 0.0015 (8) −0.0002 (7) 0.0021 (8)
C8 0.0160 (12) 0.0233 (13) 0.0187 (12) 0.0094 (10) 0.0079 (9) 0.0094 (10)
C9' 0.0202 (12) 0.0225 (12) 0.0137 (11) 0.0086 (10) 0.0084 (9) 0.0073 (10)
C9 0.0297 (14) 0.0207 (12) 0.0112 (11) 0.0139 (11) 0.0065 (10) 0.0030 (9)
C10' 0.0222 (12) 0.0182 (12) 0.0126 (11) 0.0070 (10) 0.0004 (9) −0.0006 (9)
C10 0.0268 (13) 0.0161 (12) 0.0118 (11) 0.0074 (10) −0.0010 (9) −0.0016 (9)
C11 0.0158 (11) 0.0121 (10) 0.0143 (11) 0.0039 (9) −0.0003 (9) 0.0000 (9)
C11' 0.0138 (11) 0.0137 (11) 0.0130 (11) 0.0009 (9) 0.0002 (9) 0.0011 (9)

Geometric parameters (Å, °)

N1'—C5' 1.333 (3) C7'—C8' 1.394 (3)
N1'—N2' 1.408 (2) C7'—H7' 0.9300
N1'—C6' 1.426 (3) N4'—H4' 0.8600
N1—C5 1.335 (3) N4—H4 0.8600
N1—N2 1.410 (3) C7—C8 1.395 (3)
N1—C6 1.420 (3) C7—H7 0.9300
C5—N5 1.325 (3) C8'—C9' 1.385 (4)
C5—N4 1.358 (3) C8'—H8' 0.9300
C3'—N2' 1.313 (3) N5—H5A 0.8600
C3'—N3' 1.345 (3) N5—H5B 0.8600
C3'—N4' 1.383 (3) N5'—H5'A 0.8600
N2—C3 1.310 (3) N5'—H5'B 0.8600
C3—N3 1.339 (3) C8—C9 1.386 (4)
C3—N4 1.380 (3) C8—H8 0.9300
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C5'—N5' 1.337 (3) C9'—C10' 1.395 (4)
C5'—N4' 1.344 (3) C9'—H9' 0.9300
N3—H3A 0.8600 C9—C10 1.389 (4)
N3—H3B 0.8600 C9—H9 0.9300
C6—C11 1.389 (3) C10'—C11' 1.384 (3)
C6—C7 1.398 (3) C10'—H10' 0.9300
C6'—C7' 1.389 (3) C10—C11 1.387 (3)
C6'—C11' 1.395 (3) C10—H10 0.9300
N3'—H3'A 0.8600 C11—H11 0.9300
N3'—H3'B 0.8600 C11'—H11' 0.9300

C5'—N1'—N2' 111.37 (18) C3'—N4'—H4' 126.5
C5'—N1'—C6' 127.14 (19) C5—N4—C3 107.23 (18)
N2'—N1'—C6' 121.48 (17) C5—N4—H4 126.4
C5—N1—N2 111.48 (18) C3—N4—H4 126.4
C5—N1—C6 129.6 (2) C8—C7—C6 118.6 (2)
N2—N1—C6 118.86 (18) C8—C7—H7 120.7
N5—C5—N1 129.0 (2) C6—C7—H7 120.7
N5—C5—N4 125.0 (2) C9'—C8'—C7' 120.2 (2)
N1—C5—N4 106.04 (19) C9'—C8'—H8' 119.9
N2'—C3'—N3' 126.0 (2) C7'—C8'—H8' 119.9
N2'—C3'—N4' 111.76 (19) C5—N5—H5A 120.0
N3'—C3'—N4' 122.3 (2) C5—N5—H5B 120.0
C3—N2—N1 103.46 (17) H5A—N5—H5B 120.0
C3'—N2'—N1' 103.15 (17) C5'—N5'—H5'A 120.0
N2—C3—N3 125.2 (2) C5'—N5'—H5'B 120.0
N2—C3—N4 111.75 (19) H5'A—N5'—H5'B 120.0
N3—C3—N4 123.0 (2) C9—C8—C7 120.8 (2)
N1'—C5'—N5' 126.9 (2) C9—C8—H8 119.6
N1'—C5'—N4' 106.66 (19) C7—C8—H8 119.6
N5'—C5'—N4' 126.5 (2) C8'—C9'—C10' 120.1 (2)
C3—N3—H3A 120.0 C8'—C9'—H9' 120.0
C3—N3—H3B 120.0 C10'—C9'—H9' 120.0
H3A—N3—H3B 120.0 C8—C9—C10 119.9 (2)
C11—C6—C7 120.9 (2) C8—C9—H9 120.1
C11—C6—N1 118.8 (2) C10—C9—H9 120.1
C7—C6—N1 120.3 (2) C11'—C10'—C9' 120.7 (2)
C7'—C6'—C11' 121.9 (2) C11'—C10'—H10' 119.7
C7'—C6'—N1' 118.6 (2) C9'—C10'—H10' 119.7
C11'—C6'—N1' 119.5 (2) C11—C10—C9 120.3 (2)
C3'—N3'—H3'A 120.0 C11—C10—H10 119.8
C3'—N3'—H3'B 120.0 C9—C10—H10 119.8
H3'A—N3'—H3'B 120.0 C10—C11—C6 119.6 (2)
C6'—C7'—C8' 118.7 (2) C10—C11—H11 120.2
C6'—C7'—H7' 120.7 C6—C11—H11 120.2
C8'—C7'—H7' 120.7 C10'—C11'—C6' 118.3 (2)
C5'—N4'—C3' 107.03 (18) C10'—C11'—H11' 120.8
C5'—N4'—H4' 126.5 C6'—C11'—H11' 120.8

N2—N1—C5—N5 −179.4 (2) C11'—C6'—C7'—C8' −3.1 (3)
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C6—N1—C5—N5 −0.8 (4) N1'—C6'—C7'—C8' 175.9 (2)
N2—N1—C5—N4 1.8 (2) N1'—C5'—N4'—C3' 1.7 (2)
C6—N1—C5—N4 −179.6 (2) N5'—C5'—N4'—C3' −179.7 (2)
C5—N1—N2—C3 −1.7 (2) N2'—C3'—N4'—C5' −1.1 (3)
C6—N1—N2—C3 179.49 (19) N3'—C3'—N4'—C5' 179.6 (2)
N3'—C3'—N2'—N1' 179.3 (2) N5—C5—N4—C3 −180.0 (2)
N4'—C3'—N2'—N1' 0.0 (2) N1—C5—N4—C3 −1.1 (2)
C5'—N1'—N2'—C3' 1.2 (2) N2—C3—N4—C5 0.0 (3)
C6'—N1'—N2'—C3' −179.8 (2) N3—C3—N4—C5 −178.4 (2)
N1—N2—C3—N3 179.3 (2) C11—C6—C7—C8 1.5 (3)
N1—N2—C3—N4 1.0 (2) N1—C6—C7—C8 178.6 (2)
N2'—N1'—C5'—N5' 179.6 (2) C6'—C7'—C8'—C9' 1.4 (3)
C6'—N1'—C5'—N5' 0.7 (4) C6—C7—C8—C9 −1.3 (3)
N2'—N1'—C5'—N4' −1.8 (2) C7'—C8'—C9'—C10' 1.3 (4)
C6'—N1'—C5'—N4' 179.2 (2) C7—C8—C9—C10 0.0 (4)
C5—N1—C6—C11 −147.8 (2) C8'—C9'—C10'—C11' −2.4 (4)
N2—N1—C6—C11 30.7 (3) C8—C9—C10—C11 1.1 (4)
C5—N1—C6—C7 35.1 (3) C9—C10—C11—C6 −0.9 (3)
N2—N1—C6—C7 −146.4 (2) C7—C6—C11—C10 −0.4 (3)
C5'—N1'—C6'—C7' −52.8 (3) N1—C6—C11—C10 −177.5 (2)
N2'—N1'—C6'—C7' 128.4 (2) C9'—C10'—C11'—C6' 0.8 (3)
C5'—N1'—C6'—C11' 126.2 (2) C7'—C6'—C11'—C10' 2.0 (3)
N2'—N1'—C6'—C11' −52.6 (3) N1'—C6'—C11'—C10' −177.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A

N3—H3A···N2'i 0.86 2.20 3.037 (3) 164
N3—H3B···Br1 0.86 2.56 3.387 (2) 163

N3'—H3'A···N2ii 0.86 2.34 3.046 (3) 140
N3'—H3'B···Br2 0.86 2.65 3.404 (3) 147
N4—H4···Br2 0.86 2.74 3.417 (3) 137
N4'—H4'···Br2 0.86 2.51 3.254 (3) 145

N5—H5A···Br1iii 0.86 2.69 3.369 (3) 137
N5—H5B···Br2 0.86 2.49 3.281 (3) 153

N5'—H5'A···Br1iv 0.86 2.84 3.489 (3) 133
N5'—H5'B···Br1 0.86 2.43 3.278 (3) 167
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1/2, y+1/2, −z+3/2; (iv) −x+1, −y, −z+1.
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4
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Fig. 5
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Fig. 6


